Python SDK
Python client SDK for GoodMem with PyPI support and streaming capabilities
Python client for GoodMem - a vector-based memory storage and retrieval service. Provides APIs for creating memory spaces, storing memories with vector embeddings, and performing semantic search with streaming retrieval. Supports multiple embedding providers and advanced metadata handling.
This Python package is automatically generated by the OpenAPI Generator project:
- API version: v1
- Package version: 1.5.10
- Generator version: 7.13.0
- Build package: org.openapitools.codegen.languages.PythonClientCodegen For more information, please visit https://goodmem.io/support
Server Compatibility
This client version is generated with GoodMem server v1.0.224.
Requirements.
Python 3.9+
Installation & Usage
pip install
You can install the package directly from PyPI:
pip install goodmem-clientIf you prefer uv:
uv pip install goodmem-clientThen import the package:
import goodmem_clientSetuptools
Install via Setuptools.
python setup.py install --user(or sudo python setup.py install to install the package for all users)
Then import the package:
import goodmem_clientTests
Execute pytest to run the tests.
Getting Started
Please follow the installation procedure and then run the following:
## Import required modules
from goodmem_client.api import APIKeysApi, SpacesApi
from goodmem_client.configuration import Configuration
from goodmem_client.api_client import ApiClient
from goodmem_client.models import CreateApiKeyRequest
from goodmem_client.streaming import MemoryStreamClient
from goodmem_client.rest import ApiException
from pprint import pprint
## Configure the API client
configuration = Configuration()
configuration.host = "http://localhost:8080" # Use your server URL
## Set authentication
configuration.api_key = {"ApiKeyAuth": "your-api-key"}
## Create API client
api_client = ApiClient(configuration=configuration) # Your API key here
## Create an instance of the API class
api_instance = APIKeysApi(api_client=api_client)
## Prepare a create request with labels
create_request = CreateApiKeyRequest(
labels={
"environment": "development",
"service": "chat-ui"
}
)
try:
# Create a new API key
api_response = api_instance.create_api_key(create_api_key_request=create_request)
print("API Key created successfully:")
print(f"API Key ID: {api_response.api_key_metadata.api_key_id}")
print(f"Raw API Key: {api_response.raw_api_key}")
except ApiException as e:
print(f"Exception when calling APIKeysApi->create_api_key: {e}")Streaming Memory Retrieval
For memory retrieval operations, use the streaming client which is the primary way to search and retrieve memories:
from goodmem_client.api import SpacesApi
from goodmem_client.streaming import MemoryStreamClient
from goodmem_client.configuration import Configuration
from goodmem_client.api_client import ApiClient
## Configure client
configuration = Configuration()
configuration.host = "http://localhost:8080"
configuration.api_key = {"ApiKeyAuth": "your-api-key"}
api_client = ApiClient(configuration=configuration)
## Create streaming client
spaces_api = SpacesApi(api_client=api_client)
stream_client = MemoryStreamClient(api_client)
## Get space ID (first available space)
spaces = spaces_api.list_spaces()
space_id = spaces.spaces[0].space_id if spaces.spaces else None
## Stream memory retrieval using advanced POST endpoint with custom post-processor
for event in stream_client.retrieve_memory_stream(
message="your search query",
space_ids=[space_id] if space_id else None,
requested_size=5,
fetch_memory=True,
fetch_memory_content=False,
format="ndjson",
post_processor_name="com.goodmem.retrieval.postprocess.ChatPostProcessorFactory",
post_processor_config={
"llm_id": "your-llm-uuid",
"reranker_id": "your-reranker-uuid",
"relevance_threshold": 0.5,
"max_results": 10
}
):
if event.abstract_reply:
print(f"Abstract: {event.abstract_reply.text}")
elif event.retrieved_item and event.retrieved_item.memory:
memory = event.retrieved_item.memory
print(f"Memory: {memory.get('memoryId')}")
if 'metadata' in memory:
print(f"Metadata: {memory['metadata']}")
## Alternative: Use convenience method for ChatPostProcessor with simple parameters
for event in stream_client.retrieve_memory_stream_chat(
message="your search query",
space_ids=[space_id] if space_id else None,
requested_size=5,
fetch_memory=True,
format="ndjson",
pp_llm_id="your-llm-uuid",
pp_reranker_id="your-reranker-uuid",
pp_relevance_threshold=0.5,
pp_max_results=10
):
if event.abstract_reply:
print(f"Abstract: {event.abstract_reply.text}")For comprehensive examples, see the samples directory:
apikey_sample.py- API key CRUD operationsstreaming_sample.py- Memory retrieval with streamingreproduce_issue_71.py- Memory creation with metadata
Using Filter Expressions
Filter expressions allow you to pre-filter memories based on metadata before semantic search. This enables more precise retrieval by combining metadata filtering with vector similarity.
from goodmem_client.streaming import MemoryStreamClient
from goodmem_client.models.space_key import SpaceKey
from goodmem_client.configuration import Configuration
from goodmem_client.api_client import ApiClient
## Configure client
configuration = Configuration()
configuration.host = "http://localhost:8080"
configuration.api_key = {"ApiKeyAuth": "your-api-key"}
api_client = ApiClient(configuration=configuration)
stream_client = MemoryStreamClient(api_client)
## Example 1: Filter by category
space_key = SpaceKey(
space_id="your-space-id",
filter="CAST(val('$.category') AS TEXT) = 'technology'"
)
for event in stream_client.retrieve_memory_stream(
message="artificial intelligence",
space_keys=[space_key],
requested_size=5
):
if event.retrieved_item and event.retrieved_item.chunk:
chunk = event.retrieved_item.chunk
print(f"Chunk: {chunk.chunk.get('chunkText', '')[:100]}...")
## Example 2: Filter by time range
space_key = SpaceKey(
space_id="your-space-id",
filter="CAST(val('$.created_at') AS TEXT) >= '2025-01-01T00:00:00Z'"
)
for event in stream_client.retrieve_memory_stream(
message="recent developments",
space_keys=[space_key],
requested_size=5
):
if event.retrieved_item and event.retrieved_item.chunk:
chunk = event.retrieved_item.chunk
print(f"Relevance: {chunk.relevance_score:.4f}")
print(f"Text: {chunk.chunk.get('chunkText', '')[:80]}...")
## Example 3: Complex filter with multiple conditions
space_key = SpaceKey(
space_id="your-space-id",
filter="""
CAST(val('$.priority') AS TEXT) = 'high'
AND CAST(val('$.status') AS TEXT) = 'active'
AND CAST(val('$.score') AS INTEGER) >= 80
"""
)
for event in stream_client.retrieve_memory_stream(
message="important tasks",
space_keys=[space_key],
requested_size=10
):
if event.retrieved_item and event.retrieved_item.chunk:
print(f"Found matching chunk")
## Example 4: Different filters for different spaces
space_keys = [
SpaceKey(
space_id="space-1-id",
filter="CAST(val('$.category') AS TEXT) = 'research'"
),
SpaceKey(
space_id="space-2-id",
filter="CAST(val('$.category') AS TEXT) = 'documentation'"
)
]
for event in stream_client.retrieve_memory_stream(
message="machine learning concepts",
space_keys=space_keys,
requested_size=10
):
if event.memory_definition:
space_id = event.memory_definition.get('spaceId')
metadata = event.memory_definition.get('metadata', {})
print(f"Memory from space: {space_id}, category: {metadata.get('category')}")
## Example 5: Mix filtered and unfiltered spaces
space_keys = [
SpaceKey(
space_id="space-1-id",
filter="CAST(val('$.source') AS TEXT) = 'trusted_source'"
),
SpaceKey(
space_id="space-2-id" # No filter - all memories from this space
)
]
for event in stream_client.retrieve_memory_stream(
message="information query",
space_keys=space_keys,
requested_size=10
):
if event.retrieved_item and event.retrieved_item.chunk:
print(f"Relevance: {event.retrieved_item.chunk.relevance_score:.4f}")Filter Expression Syntax:
- Extract field:
val('$.field_name') - Extract array:
vals('$.array_field[*]') - Check field exists:
exists('$.field_name') - String comparison:
CAST(val('$.category') AS TEXT) = 'technology' - Numeric comparison:
CAST(val('$.score') AS INTEGER) >= 80 - Date comparison:
CAST(val('$.created_at') AS DATE) >= CAST('2025-01-01' AS DATE) - String pattern:
CAST(val('$.title') AS TEXT) LIKE '%AI%' - Case-insensitive pattern:
CAST(val('$.title') AS TEXT) ILIKE '%ai%' - Array membership:
'tag1' IN vals('$.tags') - Multiple conditions: Use
AND,OR,NOToperators
For more details on filter expressions, see the GoodMem filter documentation.
Documentation for API Endpoints
All URIs are relative to http://localhost:8080
| Class | Method | HTTP request | Description |
|---|---|---|---|
| APIKeysApi | create_api_key | POST /v1/apikeys | Create a new API key |
| APIKeysApi | delete_api_key | DELETE /v1/apikeys/{id} | Delete an API key |
| APIKeysApi | list_api_keys | GET /v1/apikeys | List API keys |
| APIKeysApi | update_api_key | PUT /v1/apikeys/{id} | Update an API key |
| AdministrationApi | drain_server | POST /v1/admin:drain | Request the server to enter drain mode |
| AdministrationApi | purge_background_jobs | POST /v1/admin/background-jobs:purge | Purge completed background jobs |
| AdministrationApi | reload_license | POST /v1/admin/license:reload | Reload the active license from disk |
| EmbeddersApi | create_embedder | POST /v1/embedders | Create a new embedder |
| EmbeddersApi | delete_embedder | DELETE /v1/embedders/{id} | Delete an embedder |
| EmbeddersApi | get_embedder | GET /v1/embedders/{id} | Get an embedder by ID |
| EmbeddersApi | list_embedders | GET /v1/embedders | List embedders |
| EmbeddersApi | update_embedder | PUT /v1/embedders/{id} | Update an embedder |
| LLMsApi | create_llm | POST /v1/llms | Create a new LLM |
| LLMsApi | delete_llm | DELETE /v1/llms/{id} | Delete an LLM |
| LLMsApi | get_llm | GET /v1/llms/{id} | Get an LLM by ID |
| LLMsApi | list_llms | GET /v1/llms | List LLMs |
| LLMsApi | update_llm | PUT /v1/llms/{id} | Update an LLM |
| MemoriesApi | batch_create_memory | POST /v1/memories:batchCreate | Create multiple memories in a batch |
| MemoriesApi | batch_delete_memory | POST /v1/memories:batchDelete | Delete multiple memories by ID |
| MemoriesApi | batch_get_memory | POST /v1/memories:batchGet | Get multiple memories by ID |
| MemoriesApi | create_memory | POST /v1/memories | Create a new memory |
| MemoriesApi | delete_memory | DELETE /v1/memories/{id} | Delete a memory |
| MemoriesApi | get_memory | GET /v1/memories/{id} | Get a memory by ID |
| MemoriesApi | get_memory_content | GET /v1/memories/{id}/content | Download memory content |
| MemoriesApi | list_memories | GET /v1/spaces/{spaceId}/memories | List memories in a space |
| MemoriesApi | retrieve_memory | GET /v1/memories:retrieve | Stream semantic memory retrieval |
| MemoriesApi | retrieve_memory_advanced | POST /v1/memories:retrieve | Advanced semantic memory retrieval with JSON |
| OCRApi | ocr_document | POST /v1/ocr:document | Run OCR on a document or image |
| RerankersApi | create_reranker | POST /v1/rerankers | Create a new reranker |
| RerankersApi | delete_reranker | DELETE /v1/rerankers/{id} | Delete a reranker |
| RerankersApi | get_reranker | GET /v1/rerankers/{id} | Get a reranker by ID |
| RerankersApi | list_rerankers | GET /v1/rerankers | List rerankers |
| RerankersApi | update_reranker | PUT /v1/rerankers/{id} | Update a reranker |
| SpacesApi | create_space | POST /v1/spaces | Create a new Space |
| SpacesApi | delete_space | DELETE /v1/spaces/{id} | Delete a space |
| SpacesApi | get_space | GET /v1/spaces/{id} | Get a space by ID |
| SpacesApi | list_spaces | GET /v1/spaces | List spaces |
| SpacesApi | update_space | PUT /v1/spaces/{id} | Update a space |
| SystemApi | get_system_info | GET /v1/system/info | Retrieve server build metadata |
| SystemApi | initialize_system | POST /v1/system/init | Initialize the system |
| UsersApi | get_current_user | GET /v1/users/me | Get current user profile |
| UsersApi | get_user | GET /v1/users/{id} | Get a user by ID |
| UsersApi | get_user_by_email | GET /v1/users/email/{email} | Get user by email address |
Documentation For Authorization
Authentication schemes defined for the API:
BearerAuth
- Type: Bearer authentication
ApiKeyAuth
- Type: API key
- API key parameter name: x-api-key
- Location: HTTP header
Contact & Support
For questions or issues with the Python client, please visit:
- PyPI package: https://pypi.org/project/goodmem-client/